featurebyte.SourceTable.describe¶
describe( 
size: int=0, 
seed: int=1234, 
from_timestamp: Union[datetime, str, NoneType]=None, 
to_timestamp: Union[datetime, str, NoneType]=None, 
after_cleaning: bool=False
) -> DataFrameDescription¶
Returns descriptive statistics of the table columns.
Parameters¶
- size: int
 default: 0
 Maximum number of rows to sample. If 0, all rows will be used.
- seed: int
 default: 1234
 Seed to use for random sampling.
- from_timestamp: Union[datetime, str, NoneType]
 Start of date range to sample from.
- to_timestamp: Union[datetime, str, NoneType]
 End of date range to sample from.
- after_cleaning: bool
 default: False
 Whether to apply cleaning operations.
Returns¶
- DataFrame
 Summary of the table.
Examples¶
Get a summary of a view.
>>> catalog.get_table("GROCERYINVOICE").describe(
...     from_timestamp=datetime(2022, 1, 1),
...     to_timestamp=datetime(2022, 12, 31),
... )
                            GroceryInvoiceGuid                   GroceryCustomerGuid                      Timestamp            record_available_at     Amount
dtype                                  VARCHAR                               VARCHAR                      TIMESTAMP                      TIMESTAMP      FLOAT
unique                                   25422                                   471                          25399                           5908       6734
%missing                                   0.0                                   0.0                            0.0                            0.0        0.0
%empty                                       0                                     0                            NaN                            NaN        NaN
entropy                               6.214608                              5.784261                            NaN                            NaN        NaN
top       018f0163-249b-4cbc-ab4d-e933ce3786c1  c5820998-e779-4d62-ab8b-79ef0dfd841b                            NaN                            NaN        NaN
freq                                       1.0                                 692.0                            NaN                            NaN        NaN
mean                                       NaN                                   NaN                            NaN                            NaN  19.966062
std                                        NaN                                   NaN                            NaN                            NaN  25.027878
min                                        NaN                                   NaN  2022-01-01T00:24:14.000000000  2022-01-01T01:01:00.000000000        0.0
25%                                        NaN                                   NaN                            NaN                            NaN     4.5325
50%                                        NaN                                   NaN                            NaN                            NaN     10.725
75%                                        NaN                                   NaN                            NaN                            NaN      24.99
max                                        NaN                                   NaN  2022-12-30T22:37:57.000000000  2022-12-30T23:01:00.000000000     360.84
See Also¶
- Table.preview: Retrieve a preview of a table.
- Table.sample: Retrieve a sample of a table.