featurebyte.Target.compute_target_table¶
compute_target_table( 
observation_table: Union[ObservationTable, DataFrame], 
observation_table_name: str, 
serving_names_mapping: Optional[Dict[str, str]]=None, 
skip_entity_validation_checks: bool=False
) -> ObservationTableDescription¶
Materialize feature list using an observation table asynchronously. The targets will be materialized into a target table.
Parameters¶
- observation_table: Union[ObservationTable, DataFrame]
 Observation set withPOINT_IN_TIMEand serving names columns. This can be either an ObservationTable of a pandas DataFrame.
- observation_table_name: str
 Name of the observation table to be created with the target values
- serving_names_mapping: Optional[Dict[str, str]]
 Optional serving names mapping if the training events table has different serving name.
- skip_entity_validation_checks: bool
 default: False
 Whether to skip entity validation checks
Returns¶
- ObservationTable